Search results for "Archaeal Viruses"
showing 6 items of 6 documents
Did the ancient crenarchaeal viruses from the dawn of life survive exceptionally well the eons of meteorite bombardment?
2009
The viruses of Crenarchaeota are unexpectedly diverse in their morphologies, and most have no, or few, genes related to bacterial, eukaryal, euryarchaeal, or other crenarchaeal viruses. Though several different virus morphotypes have been discovered in enrichment cultures of microbial communities collected from geothermally heated environments around the world, the origins of such differences are unknown. We present a model that combines consideration of Earth's geological history, the early emergence of hyperthermophiles, and the early formation of viruses from primordial genes with the intent to explain this vast diversity of crenarchaeal viruses. Several meteorite- or flood basalt-induce…
Related haloarchaeal pleomorphic viruses contain different genome types
2012
Archaeal viruses have been the subject of recent interest due to the diversity discovered in their virion architectures. Recently, a new group of haloarchaeal pleomorphic viruses has been discovered. It is distinctive in terms of the virion morphology and different genome types (ssDNA/dsDNA) harboured by rather closely related representatives. To date there are seven isolated viruses belonging to this group. Most of these share a cluster of five conserved genes, two of which encode major structural proteins. Putative proviruses and proviral remnants containing homologues of the conserved gene cluster were also identified suggesting a long-standing relationship of these viruses with their ho…
Bacterial Viruses Subcommittee and Archaeal Viruses Subcommittee of the ICTV: Update of taxonomy changes in 2021
2021
In this article, we – the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) – summarise the results of our activities for the period March 2020 – March 2021. We report the division of the former Bacterial and Archaeal Viruses Subcommittee in two separate Subcommittees, welcome new members, a new Subcommittee Chair and Vice Chair, and give an overview of the new taxa that were proposed in 2020, approved by the Executive Committee and ratified by vote in 2021. In particular, a new realm, three orders, 15 families, 31 subfamilies, 734 genera and 1845 species were newly created or redefined (moved/promoted). Supplem…
A Unique Group of Virus-Related, Genome-Integrating Elements Found Solely in the Bacterial Family Thermaceae and the Archaeal Family Halobacteriaceae
2010
ABSTRACT Viruses SH1 and P23-77, infecting archaeal Haloarcula species and bacterial Thermus species, respectively, were recently designated to form a novel viral lineage. In this study, the lineage is expanded to archaeal Halomicrobium and bacterial Meiothermus species by analysis of five genome-integrated elements that share the core genes with these viruses.
Classification of prokaryotic genetic replicators: between selfishness and altruism
2015
Prokaryotes harbor a variety of genetic replicators, including plasmids, viruses, and chromosomes, each having different effects on the phenotype of the hosting cell. Here, we propose a classification for replicators of bacteria and archaea on the basis of their horizontal-transfer potential and the type of relationships (mutualistic, symbiotic, commensal, or parasitic) that they have with the host cell vehicle. Horizontal movement of replicators can be either active or passive, reflecting whether or not the replicator encodes the means to mediate its own transfer from one cell to another. Some replicators also have an infectious extracellular state, thus separating viruses from other mobil…
Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology
2019
Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformati…